Goto

Collaborating Authors

 Neural Networks


Amortized Planning with Large-Scale Transformers: A Case Study on Chess Grégoire Delétang 1

Neural Information Processing Systems

This paper uses chess, a landmark planning problem in AI, to assess transformers' performance on a planning task where memorization is futile -- even at a large scale. To this end, we release ChessBench, a large-scale benchmark dataset of 10 million chess games with legal move and value annotations (15 billion data points) provided by Stockfish 16, the state-of-the-art chess engine. We train transformers with up to 270 million parameters on ChessBench via supervised learning and perform extensive ablations to assess the impact of dataset size, model size, architecture type, and different prediction targets (state-values, action-values, and behavioral cloning). Our largest models learn to predict action-values for novel boards quite accurately, implying highly non-trivial generalization. Despite performing no explicit search, our resulting chess policy solves challenging chess puzzles and achieves a surprisingly strong Lichess blitz Elo of 2895 against humans (grandmaster level). We also compare to Leela Chess Zero and AlphaZero (trained without supervision via self-play) with and without search. We show that, although a remarkably good approximation of Stockfish's search-based algorithm can be distilled into large-scale transformers via supervised learning, perfect distillation is still beyond reach, thus making ChessBench well-suited for future research.


Nonparametric Classification on Low Dimensional Manifolds using Overparameterized Convolutional Residual Networks

Neural Information Processing Systems

Convolutional residual neural networks (ConvResNets), though overparametersized, can achieve remarkable prediction performance in practice, which cannot be well explained by conventional wisdom. To bridge this gap, we study the performance of ConvResNeXts trained with weight decay, which cover ConvResNets as a special case, from the perspective of nonparametric classification. Our analysis allows for infinitely many building blocks in ConvResNeXts, and shows that weight decay implicitly enforces sparsity on these blocks. Specifically, we consider a smooth target function supported on a low-dimensional manifold, then prove that ConvResNeXts can adapt to the function smoothness and low-dimensional structures and efficiently learn the function without suffering from the curse of dimensionality. Our findings partially justify the advantage of overparameterized ConvResNeXts over conventional machine learning models.


Unleashing Multispectral Video's Potential in Semantic Segmentation: A Semi-supervised Viewpoint and New UAV-View Benchmark

Neural Information Processing Systems

Thanks to the rapid progress in RGB & thermal imaging, also known as multispectral imaging, the task of multispectral video semantic segmentation, or MVSS in short, has recently drawn significant attentions. Noticeably, it offers new opportunities in improving segmentation performance under unfavorable visual conditions such as poor light or overexposure. Unfortunately, there are currently very few datasets available, including for example MVSeg dataset that focuses purely toward eye-level view; and it features the sparse annotation nature due to the intensive demands of labeling process. To address these key challenges of the MVSS task, this paper presents two major contributions: the introduction of MVUAV, a new MVSS benchmark dataset, and the development of a dedicated semi-supervised MVSS baseline - SemiMV. Our MVUAV dataset is captured via Unmanned Aerial Vehicles (UAV), which offers a unique oblique bird's-eye view complementary to the existing MVSS datasets; it also encompasses a broad range of day/night lighting conditions and over 30 semantic categories. In the meantime, to better leverage the sparse annotations and extra unlabeled RGB-Thermal videos, a semi-supervised learning baseline, SemiMV, is proposed to enforce consistency regularization through a dedicated Cross-collaborative Consistency Learning (C3L) module and a denoised temporal aggregation strategy. Comprehensive empirical evaluations on both MVSeg and MVUAV benchmark datasets have showcased the efficacy of our SemiMV baseline.


A Unified Generalization Analysis of Re-Weighting and Logit-Adjustment for Imbalanced Learning Zitai Wang 1,2 Zhiyong Yang 4 Yuan He

Neural Information Processing Systems

Real-world datasets are typically imbalanced in the sense that only a few classes have numerous samples, while many classes are associated with only a few samples. As a result, a naïve ERM learning process will be biased towards the majority classes, making it difficult to generalize to the minority classes. To address this issue, one simple but effective approach is to modify the loss function to emphasize the learning on minority classes, such as re-weighting the losses or adjusting the logits via class-dependent terms. However, existing generalization analysis of such losses is still coarse-grained and fragmented, failing to explain some empirical results. To bridge this gap, we propose a novel technique named data-dependent contraction to capture how these modified losses handle different classes. On top of this technique, a fine-grained generalization bound is established for imbalanced learning, which helps reveal the mystery of re-weighting and logit-adjustment in a unified manner. Furthermore, a principled learning algorithm is developed based on the theoretical insights. Finally, the empirical results on benchmark datasets not only validate the theoretical results but also demonstrate the effectiveness of the proposed method.


Stable-Pose: Leveraging Transformers for Pose-Guided Text-to-Image Generation

Neural Information Processing Systems

Controllable text-to-image (T2I) diffusion models have shown impressive performance in generating high-quality visual content through the incorporation of various conditions. Current methods, however, exhibit limited performance when guided by skeleton human poses, especially in complex pose conditions such as side or rear perspectives of human figures. To address this issue, we present Stable-Pose, a novel adapter model that introduces a coarse-to-fine attention masking strategy into a vision Transformer (ViT) to gain accurate pose guidance for T2I models. Stable-Pose is designed to adeptly handle pose conditions within pre-trained Stable Diffusion, providing a refined and efficient way of aligning pose representation during image synthesis. We leverage the query-key self-attention mechanism of ViTs to explore the interconnections among different anatomical parts in human pose skeletons. Masked pose images are used to smoothly refine the attention maps based on target pose-related features in a hierarchical manner, transitioning from coarse to fine levels. Additionally, our loss function is formulated to allocate increased emphasis to the pose region, thereby augmenting the model's precision in capturing intricate pose details. We assessed the performance of Stable-Pose across five public datasets under a wide range of indoor and outdoor human pose scenarios. Stable-Pose achieved an AP score of 57.1 in the LAION-Human dataset, marking around 13% improvement over the established technique ControlNet.


NeuMA: Neural Material Adaptor for Visual Grounding of Intrinsic Dynamics Yanhao Ge

Neural Information Processing Systems

While humans effortlessly discern intrinsic dynamics and adapt to new scenarios, modern AI systems often struggle. Current methods for visual grounding of dynamics either use pure neural-network-based simulators (black box), which may violate physical laws, or traditional physical simulators (white box), which rely on expert-defined equations that may not fully capture actual dynamics. We propose the Neural Material Adaptor (NeuMA), which integrates existing physical laws with learned corrections, facilitating accurate learning of actual dynamics while maintaining the generalizability and interpretability of physical priors. Additionally, we propose Particle-GS, a particle-driven 3D Gaussian Splatting variant that bridges simulation and observed images, allowing back-propagate image gradients to optimize the simulator. Comprehensive experiments on various dynamics in terms of grounded particle accuracy, dynamic rendering quality, and generalization ability demonstrate that NeuMA can accurately capture intrinsic dynamics.


A Million-scale Real Prompt-Gallery Dataset for Text-to-Video Diffusion Models

Neural Information Processing Systems

The arrival of Sora marks a new era for text-to-video diffusion models, bringing significant advancements in video generation and potential applications. However, Sora, along with other text-to-video diffusion models, is highly reliant on prompts, and there is no publicly available dataset that features a study of text-to-video prompts. In this paper, we introduce VidProM, the first large-scale dataset comprising 1.67 Million unique text-to-Video Prompts from real users. Additionally, this dataset includes 6.69 million videos generated by four state-of-the-art diffusion models, alongside some related data. We initially discuss the curation of this large-scale dataset, a process that is both time-consuming and costly. Subsequently, we underscore the need for a new prompt dataset specifically designed for text-to-video generation by illustrating how VidProM differs from DiffusionDB, a large-scale prompt-gallery dataset for image generation. Our extensive and diverse dataset also opens up many exciting new research areas.


Value-driven Hindsight Modelling

Neural Information Processing Systems

Value estimation is a critical component of the reinforcement learning (RL) paradigm. The question of how to effectively learn value predictors from data is one of the major problems studied by the RL community, and different approaches exploit structure in the problem domain in different ways. Model learning can make use of the rich transition structure present in sequences of observations, but this approach is usually not sensitive to the reward function. In contrast, model-free methods directly leverage the quantity of interest from the future, but receive a potentially weak scalar signal (an estimate of the return). We develop an approach for representation learning in RL that sits in between these two extremes: we propose to learn what to model in a way that can directly help value prediction.


Neural Collapse To Multiple Centers For Imbalanced Data

Neural Information Processing Systems

Neural Collapse (NC) was a recently discovered phenomenon that the output features and the classifier weights of the neural network converge to optimal geometric structures at the Terminal Phase of Training (TPT) under various losses. However, the relationship between these optimal structures at TPT and the classification performance remains elusive, especially in imbalanced learning. Even though it is noticed that fixing the classifier to an optimal structure can mitigate the minority collapse problem, the performance is still not comparable to the classical imbalanced learning methods with a learnable classifier. In this work, we find that the optimal structure can be designed to represent a better classification rule, and thus achieve better performance. In particular, we justify that, to achieve better classification, the features from the minor classes should align with more directions. This justification then yields a decision rule called the Generalized Classification Rule (GCR) and we also term these directions as the centers of the classes. Then we study the NC under an MSE-type loss via the Unconstrained Features Model (UFM) framework where (1) the features from a class tend to collapse to the mean of the corresponding centers of that class (named Neural Collapse to Multiple Centers (NCMC)) at the global optimum, and (2) the original classifier approximates a surrogate to GCR when NCMC occurs. Based on the analysis, we develop a strategy for determining the number of centers and propose a Cosine Loss function for the fixed classifier that induces NCMC. Our experiments have shown that the Cosine Loss can induce NCMC and has performance on long-tail classification comparable to the classical imbalanced learning methods.


Heterogeneity-Guided Client Sampling: Towards Fast and Efficient Non-IID Federated Learning

Neural Information Processing Systems

Particularly challenging are the settings where due to communication resource constraints only a small fraction of clients can participate in any given round of FL. Recent approaches to training a global model in FL systems with non-IID data have focused on developing client selection methods that aim to sample clients with more informative updates of the model. However, existing client selection techniques either introduce significant computation overhead or perform well only in the scenarios where clients have data with similar heterogeneity profiles. In this paper, we propose HiCS-FL (Federated Learning via Hierarchical Clustered Sampling), a novel client selection method in which the server estimates statistical heterogeneity of a client's data using the client's update of the network's output layer and relies on this information to cluster and sample the clients. We analyze the ability of the proposed techniques to compare heterogeneity of different datasets, and characterize convergence of the training process that deploys the introduced client selection method. Extensive experimental results demonstrate that in non-IID settings HiCS-FL achieves faster convergence than state-of-the-art FL client selection schemes. Notably, HiCS-FL drastically reduces computation cost compared to existing selection schemes and is adaptable to different heterogeneity scenarios.